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This work presents a resilient distributed optimization algorithm based on the event-triggering mechanism
for cyber—physical systems (CPSs) to optimize an average of convex cost functions corresponding to multiple
agents under adversarial environments. Two attack scenarios, including the f-total (each agent is affected
by at most f malicious agents in the whole network) and the f-local (each agent is affected by at most
f malicious agents in its in-neighbor set) attacks are considered. Subsequently, the convergence conditions
under these two attack scenarios are provided, respectively, both of which guarantee that the state values of
benign agents converge to a bounded error range. The optimality conditions are also presented by theoretical
analysis, which guarantee that the state values of benign agents converge to a safety interval constructed by
local optimal values under certain graph conditions, despite the misbehavior of malicious agents. In addition,
four numerical examples are presented to show the effectiveness and superiority of the event-triggering resilient
distributed optimization (RDO-E) algorithm. Compared to existing resilient algorithms, the proposed method
achieves resilient distributed optimization with higher accuracy and less demanding communication overheads.
Finally, by applying the proposed method to the multi-microgrid system, a resilient economic dispatch problem
(REDP) is successfully solved, which validates the practical viability of the RDO-E algorithm.

1. Introduction topologies. For fixed step-sizes, the work [12] developed a decentral-
ized exact first-order algorithm (EXTRA). For second-order systems,
a distributed Newton-Raphson algorithm was developed in [13] for
addressing subgradient-based optimization problems.

However, the aforementioned distributed optimization methods are
built on the predominant assumption that all agents seek for the global

optimizer cooperatively, while the distributed nature and lack of global

Cyber-physical systems (CPSs) have attracted extensive attention
due to recent advances in automation science [1-5]. With highly inte-
grated physical systems and cyber structures, CPSs represent the future
generation of engineered systems [6,7]. The investigation of distributed
optimization for CPSs has also become a research hotspot, which offers
several advantages including higher scalability, stronger robustness,
and higher efficiency in comparison to centralized patterns [8,9]. In
the context of distributed optimization, multiple agents are equipped

situational awareness make CPSs vulnerable to external malicious at-
tacks or faults. Agents that may have suffered a malicious attack or may

with local cost functions and aim to agree on a value that minimizes
the average of these functions corresponding to one decision variable.
Extensive scholarly work has been dedicated to the investigation and
analysis of distributed optimization methods on the basis of consensus
approach and subgradient descent technique [10-13]. In [10], a dis-
tributed subgradient descent (DGD) method was proposed to minimize
a sum of convex cost functions corresponding to several nodes with a
diminishing step-size. The work [11] extended the results in [10] for
solving constrained distributed optimization problems in time-varying

have encountered a fault would lose the capability of conducting the
preset control protocols [14]. Typical malicious attack models include
the f-total and f-local attack models [15,16]. Such attack models may
undermine the benign agents in the network, destroy the achievement
of distributed optimization among the benign individuals and even lead
to the overall system paralysis [17]. As shown in Fig. 1, even a single
malicious node has the ability to cause system crash. However, with
the resilient algorithm (the word ‘resilient” represents a capability

* Corresponding author at: School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
E-mail addresses: by2003110@buaa.edu.cn (Z. Liao), shaopingwang@buaa.edu.cn (S. Wang), shijian@buaa.edu.cn (J. Shi), m.li3@tue.nl (M. Li),

zhangyuwei@buaa.edu.cn (Y. Zhang), z.sun@tue.nl (Z. Sun).

https://doi.org/10.1016/j.isatra.2024.04.015

Received 1 September 2023; Received in revised form 12 April 2024; Accepted 13 April 2024

Available online 16 April 2024
0019-0578/© 2024 ISA. Published by Elsevier Ltd. All rights reserved.



Z. Liao et al.

Original Digraph

Malicious attack

Adversarial Digraph

ISA Transactions 149 (2024) 1-15

System Crash

Normal Operation

Fig. 1. A graphical example to illustrate the importance of resilient algorithms.

for agents to defend against malicious attacks and achieve a global
objective), the benign agents can still function normally despite the
influence of malicious agents. Thus, it is critical to study resilient
control for CPSs by designing resilient algorithms, thereby achieving
the desired goal in the presence of malicious attacks.

To overcome the impact of malicious attacks, the investigation of
distributed optimization under adversarial environments was extended
and the notion of resilient distributed optimization was further presented.
Resilient distributed optimization ensures that the benign agents con-
verge to the safety interval constructed by local optimal values under
certain graph conditions, despite the misbehavior of a certain num-
ber of the malicious agents. In [18], the authors revealed that it is
unattainable to design a distributed optimization algorithm that both
finds optimal solutions without malicious attacks and is resilient under
adversarial environments. Motivated by this essential constraint, the
paper [18] combined the mean subsequence reduced (MSR) algorithm
with subgradient descent technique and proposed a resilient version
of the consensus-based distributed optimization algorithm to solve
resilient distributed optimization problems. The work [19] considered
distributed optimization problems of cyber—physical networks and pre-
sented a resilient consensus-based distributed optimization algorithm
to deal with deception attacks. In [20], a novel filter method was in-
troduced to relax the graph condition for achieving resilient distributed
optimization. Trusted nodes were introduced in [21,22] and trust-based
resilient distributed consensus algorithms were developed to overcome
the impact of any number of malicious agents. Nevertheless, the afore-
mentioned studies did not give full consideration to different attack
scenarios, neither did they present complete convergence conditions
under different attack models.

A common feature of most existing resilient distributed optimization
strategies [18-20] is that they necessitate every agent in the network
to interact with its neighbors frequently to access their current states
for its own state update. This behavior costs massive communication
resources and is sometimes unnecessary. In addition, it is quite difficult
to guarantee that agents obtain the neighbors’ information at each
time step in practical scenarios. Motivated by these issues, this study
seeks to mitigate the communication overheads for agents adopting
the resilient distributed optimization algorithm [19] through an event-
triggering mechanism. Event-based protocols have been widely applied
to tackle miscellaneous control problems in the absence of malicious
attacks [23-26]. Under adversarial environments, the paper [27] de-
signed two event-triggering distributed protocols based on the idea of

MSR to reduce communication overheads and achieve consensus. In the
presence of false data injection threats, the authors in [28] developed
an event-triggering output feedback model predictive control (MPC)
scheme to provide valid system states for nonlinear MASs. Among these
promising studies, the event-triggering mechanism is shown to be effec-
tive in reducing communication overheads for agents in the presence
of malicious attacks. In the context of resilient distributed optimization,
the CPS undertakes extensive communication overheads since the MSR
algorithm and subgradient descent algorithm need to be implemented
simultaneously. Therefore, it is essential to design appropriate event-
based algorithms for resilient distributed optimization and reduce the
heavy communication burden of CPSs.

Inspired by the above observations, this study proposes a resilient
distributed optimization algorithm based on the event-triggering mech-
anism. The algorithm is designed to filter out some suspected state
values sent from the nodes’ in-neighbor set at each iteration. Two
attack models are considered and their convergence and optimality
properties are analyzed, respectively. The simulation results show that
the proposed method is more accurate and consumes less commu-
nication resource than other event-based algorithms. To the best of
our knowledge, this is the first attempt to adopt the event-triggering
mechanism and the idea of attack tolerance to address the resilient
distributed optimization problem, when the network is subject to the
attack of malicious agent injection. The main contributions of this study
are presented in the following:

1. With the introduction of a discrete-time event-based protocol, a
novel event-triggering resilient distributed optimization (RDO-
E) algorithm is developed. Different from the resilient algo-
rithms [16,27] that merely focus on the consensus problem, the
proposed method guarantees that the benign agents converge to
the safety interval constructed by local optimal values despite
the influence of the malicious agents, thereby achieving resilient
distributed optimization. Both convergence and optimality of
the benign agents are ensured with reduced communication
overheads.

2. Compared with the resilient distributed optimization methods
[18-20], wherein only partial convergence conditions are stated,
this study presents the necessary and sufficient convergence
conditions for CPSs under f-total and f-local attack models.
The optimality conditions under these two attack models are
also implemented, respectively. These results enhance theoret-
ical completeness.
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Table 1
Nomenclature.
Variable Meaning
(4 Digraph
v Node set
& Edge set
A Set of in-neighbors for agent i
v Set of out-neighbors for agent i
Rz Subset of all agents possessing at least r in-neighbors outside S C V
fi(x) Local cost function for agent i
d,(x) Subgradient of f;(x)
x;(k) State value of agent i at time step k
u; (k) Control input of agent i at time step k
Y Control gain
0,;(k) Weight of edge (j,i)
a(k) Step size at time step k
p Lower bound of non-zero 6, (k)
%;(k) Auxiliary variable of agent j at time step k
o Positive scalars associated with triggering threshold
M Set of malicious agents
B Set of benign agents
f Upper bound on the number of malicious agents
R (k) Set of retained in-neighbors for agent i after the RDO-E algorithm
c Error range

3. In contrast to the existing distributed optimization algorithms
[10,19] and event-based algorithms [23,27], the proposed RDO-
E algorithm guarantees that the benign agents achieve resilient
distributed optimization with a lower relative error and fewer
trigger times. Furthermore, the proposed method is applicable
to the resilient economic dispatch problem (REDP) in multi-
microgrid systems, and the effectiveness of the RDO-E algorithm
is validated by numerical results.

The other sections of this paper are arranged as follows. Section 2
introduces some preliminaries on graph theory, together with formu-
lating the resilient distributed optimization problem. Section 3 presents
the main results for achieving resilient distributed optimization under
f-total and f-local attack models. We validate the main results through
four numerical examples in Section 4. Eventually, Section 5 concludes
this paper and prospects future research directions.

The notations used for this paper are listed in Table 1.

2. Preliminaries and problem formulation
2.1. Preliminaries on graphs

Consider a CPS described by a digraph ¢ = (V, £). The vertex set
(or node set) is denoted as V = {1, ..., n}, with | V| being its cardinality.
The edge (j,i) € € indicates that there exists a connection from agent
j to agent i, which also implies that agent j is in the in-neighbor
set V;’ = {j € V|(,i) € &} of agent i. Moreover, we denote the
out-neighbor set of agent i as V. = {j € V|(i,j) € £}.

In the context of resilient distributed optimization, two essential
notions are set reachability and graph robustness, which are presented
as follows, respectively.

Definition 1 ([15]). Consider a digraph ¢ = (V,€£) and a nonempty
subset S C V. S is r-reachable if 3i € S such that ‘vf \S |> r, where
r € Zsyy.

Definition 2 ([15]). Consider a digraph ¢ = (V,€£) and a nonempty
subset S C V. S is (r, s)-reachable if given y; = {i €S : ‘v,* \S > r},
then |;)7:| > s, where r,s € Z.

The notions of r-reachable and (r, s)-reachable set can be extended
to graphs and the following definitions are derived.
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Definition 3 ([16]). Consider a digraph G = (¥, £). G is r-robust if for
each pair of nonempty, disjoint subsets S, S, C V, at least one of them
is r-reachable, where r € Z,,.

Definition 4 ([16]). Consider a digraph G = (V, €) with n (n > 2) agents.
G is (r, s)-robust if at least one of the conditions given below is satisfied
specific to each pair of nonempty, disjoint subsets S;,S, CV :

A% vi|=1:l. @5 |+]v5
where r € Z*, 1 < s < n, Y. (p = 1,2) is the node set in S, with

. . . op Lo
at least r in-neighbors outside of S,, which is expressed as Y =
P

{ies,: s, 1zr}.

+

=5l @

> s,

2.2. Formulation of distributed optimization problem

Before the problem formulation, we firstly present some basic prop-
erties for local cost functions. Consider a locally Lipschitz function
fi(x) : R > R. The subgradient d;(x) of f;(x) satisfies

[0 +di(x) (x' = x) < fi (x), VX' €D. 1)
where D = {x € R|f;(x) < oo}. Furthermore, f;(x) is said to be convex if

filox + (1 - w)y) S ofi(x) + (1 -w)f;(»), Vx,y €R, w €[0,1]. @

Assumption 1. Each local cost function f;(x), Vi € V is locally
Lipschitz and convex with bounded subgradients.

Consider a CPS comprised by n agents and described by ¢ = (¥, &).
For each agent i € V, its state update follows

xi(k+ 1) = x;(k) + u;(k), 3)

where k € Z, x;(k) € R is the state value and u;(k) is the control input.
Assume that all agents endeavor to tackle the following optimization
problem cooperatively:

arg min F(x) = min - Y fix), i€V 4
x g

Note that each f;(x) in (4) satisfies Assumption 1. One common
subgradient-based approach to solve problem (4) is

L=y Y 000K - x,(k) - alkd (k). )

jevim

where y is a control gain, a(k) is the step size, d;(k) is a subgradient for
local cost function f;(x), which is well-defined due to Assumption 1,
0;;(k) is the weight of edge (j, /).

Remark 1. Note that the problem (4) is an unconstrained distributed
optimization problem. Nevertheless, some assumptions and conditions
in the manuscript can be regarded as implicit constraints. For example,
Assumption 1 requires each local cost function to be locally Lipschitz
and convex, while Assumption 3 poses a constraint on the step size. In
addition, the condition that the network should satisfy a certain attack
model is also an implicit constraint. All these constraints are essential
for implementing the proposed algorithm.

Remark 2. Although all agents in the CPS are modeled in one-
dimensional space, the proposed algorithm can still be extended to
higher-dimensional space with the help of Kronecker product. Some
other tools like the convex analysis may also be required. Further-
more, the paper [29] provides an alternative way to achieve higher-
dimensional resilient distributed optimization with the introduction of
a distance filtering step. In three-dimensional space, it was proved
in [29] that the state values of benign agents will asymptotically con-
verge to a ball, while our extension ensures the asymptotic convergence
to a hyperrectangle. Extending existing results to higher-dimensional
space is also one of our next work plans.

To achieve distributed optimization under adversarial

environments, the following assumptions are made.
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Assumption 2. The edge weight satisfies 6,;(k) € [4,1) if (j,i) € £
and otherwise 6; (k) =0, Vi,j €V, where g € (0, 1) refers to a fixed
lower bound. Furthermore, we have 6,;(k) = 1—y Y jev+ 0;;(K), thus the
control gain satisfies y € (0, / max,;(} jev 0;))- i

Assumption 3. The step size a(k) is diminishing and satisfies
limy_, , a(k) =0, Y777, a(k) = co.

Remark 3. The aforementioned three assumptions are essential for
convergence and optimality analysis. Assumption 1 ensures that the
subgradient of each cost function is upper bounded by some constant,
which plays an important role in achieving consensus. Assumption 2
guarantees sufficient interaction between agents and avoids the situ-
ation where weights asymptotically vanish. Regarding Assumption 3,
the condition lim;_, a(k) = 0 ensures the convergence of the CPS,
while the condition Y;? | a(k) = oo ensures the optimality of the CPS.
A common choice for the step size a(k) is a(k) = kLH, which satisfies
all the conditions in Assumption 3. In fact, Assumptions 1-3 have been
widely adopted in [18-20] to study resilient distributed optimization
problems. Thus, they are also introduced in our work.

Note that frequent information transmission among agents in the
network is required to implement the distributed optimization algo-
rithm (5). For distributed optimization under adversarial environments,
the communication burden will become heavier since extra resilient
algorithms should be considered to overcome the influence of malicious
attacks, and more communication resources will be consumed at each
time step. Thus, the focus of this work is to design a resilient distributed
optimization algorithm that consumes less demanding communication
resources. Specifically, the event-triggering mechanism is introduced to
guarantee that the information interaction among benign agents occurs
only when specific conditions are satisfied.

2.3. Event-triggering mechanism

Various methods have been adopted to solve resilient distributed
optimization problems in recent decades [19-21]. In these studies,
agents in the network must communicate with their in-neighbors and
update their state values according to the received information at
each time step. Nevertheless, the frequent transmission of information
among agents is sometimes unattainable due to resource limitations.
To optimize network resource utilization, we develop the following
event-triggering control protocol:

wlky =y Y 0,00 (%0 — x,(k)) — a(k)d,(k), 6)

JERC)

where %;(k) = xj(r{), k e [tj,t{H), with {t{} being the sequence of the
communication time for agent j. % (k) = x j(r;) is an auxiliary variable,
which refers to the state value sent by agent j at the last communication
time. Given the initial states x;(0) and %;(0) = x;(0), the distributed
optimization will be achieved through the iteration of time step k.
Note that the update of auxiliary variable %;(k) depends on the event-
triggering mechanism, and {1} also depends on the trigger function.
The method is designed in the discrete-time domain.

Now we introduce the design of the event-triggering mechanism and
corresponding trigger function. The mechanism is applied to reduce the
communication burden with respect to agents in the CPS. The benign
agent i updates its state from x;(k) to x;(k + 1) with the consideration
of the auxiliary variable %;(k), Vj € Vl.+. The update of %;(k) depends
on whether the trigger condition is satisfied. The trigger function is
designed as

Tik+1)=le;(k + D] —z(k+ 1) (@]

where e;(k+1) = %;(k)—x;(k+1) is the difference between the auxiliary
variable of agent j at time step k and its state value at time step k + 1,
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Fig. 2. Event-triggering communication mechanism.

7k + 1) = ¢y + c;e7%**D is a threshold with 8, ¢, ¢; > 0. Furthermore,
we observe 7(k + 1) < z(k), Yk € Zs.

Note that our event-triggered threshold ¢, +¢,e~%* consists of a con-
stant term ¢, and an exponential term c;e~%*. As the iteration proceeds,
the exponential term goes to zero, while the constant term is retained
to facilitate a bounded consensus. As shown in Fig. 2, the most sig-
nificant advantage of this setting is that it not only effectively ensures
convergence but also significantly reduces communication overheads.
In addition, the threshold cy+c,e~% has been widely adopted in [23,30]
to solve event-based control problems.

With the trigger function, the update of the auxiliary variable %;(k+
1) is expressed as

x;(k+1),
X(k+1)= J
Flex D {fc,(k),

If the state value for agent j changes sufficiently, i.e., 7;(k + 1) > 0,
agent j will update its auxiliary variable and transmit its latest auxiliary
variable to agent i and other out-neighbors. Otherwise, agent i will
utilize the auxiliary variable from the previous time step for state
update and no information interaction will happen.

Note that the state update for each agent is synchronous, while
the update of the auxiliary variable is asynchronous. Furthermore,
the event-triggering condition (7) in continuous-time cases [23,30]
may result in Zeno phenomenon, which is an essential problem to
be addressed. Specifically, the threshold may approach zero when the
CPS achieves consensus, and the triggering function may be activated
infinitely within a finite time, leading to Zeno phenomenon. In our
discrete-time setting, the minimum time interval between two consec-
utive triggered events is one, thus there is no concern for the Zeno
behavior.

if Tj(k +1)>0,
otherwise.

(8)

2.4. Attack models

In this paper, agents in the CPS are classified into benign agents
and malicious agents, with the former collaborating with in-neighbors
to achieve resilient distributed optimization and the latter transmitting
wrong information to out-neighbors to interrupt the system update.
Their precise definitions are presented as follows, respectively.

Definition 5 (Benign agent [31]). An agent is said to be benign if it
sends its current state x;(k) to all of its out-neighbors at each time step
k and adopts the rule (6) for state update.

Definition 6 (Malicious agent [31]). An agent is said to be malicious if
it sends its current state x;(k) to all of its out-neighbors at each time
step k, but adopts some other rule for state update at some time steps.
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(a) 1-total model.
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(b) 1-local model.

Fig. 3. Illustrations of 1-total and 1-local attack models with six nodes.

Denote the sets of malicious and benign agents as M and B,
respectively. Then, we assume M N B =@ and MU B = V. By invoking
the definition of cardinality, the number of malicious and benign agents
is denoted as | M| and |B|, respectively. If some malicious agents exist
in the network, we say that the CPS is under a malicious attack. To
better describe the influence of malicious attacks, two attack models
are defined according to the scope of threats and their illustrations are
shown in Figs. 3(a) and 3(b), respectively.

Definition 7 (f-total model [16]). A multi-agent network is said to be
an f-total model if the whole network possesses at most f malicious
agents, i.e., |IM| < f.

Definition 8 (f-local model [16]). A multi-agent network is said to
be an f-local model if the in-neighbor set of each agent i contains at
most f malicious agents at each time step k € Z,, i.e., |V‘.+(k) n M| <
f, YieV.

It is noteworthy that conventional methodologies implicitly assume
that agents in the network operate reliably and work collaboratively
to attain global optimization. Nevertheless, the growth in the number
of agents in the network gives rise to specific concerns that lead
to a breach of this assumption. As previously discussed, distributed
optimization algorithms rely heavily on communication infrastructures,
which create numerous vulnerabilities for cyber attacks. In such at-
tacks, external adversaries may manipulate the transmitted informa-
tion. It is evident that the attack undermines the performance of
optimization algorithms by impeding benign agents from reaching the
expected optimal value or manipulating the final optimal value to be
false. More seriously, a single malicious agent may compel all agents to
reach arbitrary optimal values by merely keeping this value constant,
thus failing to achieve the global optimum.

Given the susceptibility of distributed algorithms to malicious at-
tacks, which covertly alter the output and undermines the attainment
of a global minimizer, an alternative approach is to devise an algo-
rithm that yields a sub-optimal solution resilient to malicious attacks.
The resulting solution is said to be the resilient optimal solution. To
this end, a resilient distributed optimization algorithm based on the
event-triggering mechanism will be developed in the following section.

Remark 4. In our setting, the agent identity is unknown to a benign
agent, i.e., a benign agent does not know whether its neighbors are
benign or malicious agents. Meanwhile, a malicious agent is able to
identify other malicious agents and access the current and previous
state values of neighboring agents.

3. Main results
3.1. Algorithm design

We design a resilient algorithm for addressing distributed optimiza-
tion problems under adversarial environments, which is called the
event-triggering resilient distributed optimization (RDO-E) algorithm.
Each benign agent updates its state synchronously at each time step.
Auxiliary variables are updated only when the trigger function (7) is
activated, followed by information transmission to in-neighbors. The
detailed procedures are shown in Algorithm 1.

Algorithm 1 Event-Triggering Resilient Distributed Optimization
(RDO-E) Algorithm
1: Initialize the state value x;(0) and auxiliary variable %;(0) for agent
i randomly;
2: for k=0,1,... do
3:  Receive {%;(k)|j€V/(k)} and arrange them in a list in
ascending order;
4:  if there are fewer than f auxiliary variables strictly smaller or
larger than x;(k) then
Delete all these auxiliary variables;
else
Delete the f smallest and largest auxiliary variables in the list;
end if
Obtain R (k) as the set of retained in-neighbors for agent i;
10:  Calculate the subgradient d;(k) according to (1);
11:  Update the state value for agent i according to (3) and (6);
12:  if the triggering function 7;(k+1) is activated (7;(k+1) > 0) then

O ®NT

13: Update the auxiliary variable %;(k+ 1) as %;(k + 1) = x;(k + 1);
14: Send %;(k + 1) to the out-neighbor set V" (k) of agent i;

15: else

16: Set %;(k + 1) as %;(k + 1) = £;(k).

17:  end if

18: end for

To show the principle of Algorithm 1 more intuitively, an illustra-
tion of Steps 4-8 is displayed in Fig. 4. Compared with x;(k), agent i
removes the f smallest and largest values in the sorted list. If there
are less than f values strictly larger or smaller than x;(k), then all of
the values that are strictly larger or smaller than x;(k) will be removed.
The removal of these suspicious values is achieved by setting 6;;(k) = 0.
Agent i will not utilize these removed data for state update, as they are
considered malicious.

The main feature of the RDO-E algorithm is its attack tolerance,
i.e., benign agents have no knowledge of the identities of abnormal
information. Each benign agent only neglects the possibly misleading
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[ Parameters initialization J

}

Agent i receives {i;(k)|j € VI (k)}
and sorts them in ascending order.

|

No If there are less than f values

strictly larger than x;(k)

Remove the f largest values

If there are less than f values No

strictly smaller than x; (k)

Yes Remove the f smallest values

that are strictly larger than z;(k)

v

that are strictly smaller than z;(k)

| Remove all these values

[Obtain R (k) as the set of retained in—neighbors)

Fig. 4. Flowchart of the main steps of Algorithm 1.

information from its in-neighbors. Specifically, they eliminate f edges
from in-neighbors with excessively large and small state values. Fur-
thermore, following the communication rule regarding the algorithm,
the update of auxiliary variables occurs only on the premise that the
current state value makes enough variation and exceeds the prescribed
threshold, and only in this case will the node send value to its neigh-
boring agents. The event-triggering strategy can remarkably decrease
the communication burden, which will be illustrated in Section 4.

3.2. Convergence analysis for the f-total malicious model

In this part, we will study the convergence property of the CPS
involving the f-total attack scenario. Specifically, we provide the con-
vergence conditions for CPSs to reach an agreement within the error
range ¢ under the f-total model. The following lemma is presented for
the convenience of convergence analysis.

Lemma 1 (11). Let {¢,} be a positive scalar sequence. Assume that
limy_, o, @, = 0. For ¢ € (0, 1), it holds

k
lim " ¢~ =0. 9
k—oc0
1=0
Now, we are ready to give the necessary and sufficient conditions
for the CPS to reach an agreement within the error range ¢ under the
f-total model.

Theorem 1. Consider a CPS modeled by G = (V, £). Let Assumptions 1—
3 hold. Assume that each agent adopts the RDO-E algorithm for state
update. Under the attack of f-total model, agreement within the error
range c¢ will be reached among benign agents if and only if the network
is (f + 1, f + 1)-robust. Furthermore, the error range c¢ will be achieved if ¢
satisfies
ynfl ﬂ"

I c. (10)

¢ <

Proof (Necessity). We consider the special case without the event-
triggering mechanism (i.e., ¢, = ¢; = 0) and prove the necessity of the
network condition by contradiction. Assume that the network is not
(f +1, f+1)-robust. According to Definition 4, the following conditions
hold:

O <1s). @L<l

I A B VAR EFAECRCRS (11)

where S| and S, are nonempty and disjoint node sets. Without loss of
generality,' let the local cost functions for agents be

argmin f;(x) = x;, Vi € §;
X

argmin f;(x) = x,, Vj € S,
X

argmin f;(x) € (x1,x;), VI € V\(5; U S)
X

with gradient being zero, where x;,x, € R and x; < x,. Furthermore,
suppose that the initial state values of agents meet

x;(0)=xy, Vie S5,
xj(O) =X, VJES,
x;(0) € (x1,x5), VI € P\(S5,US)).

Since Condition (3) in (11) holds, we let all the agents in ybf,;’l and )75{;'
be malicious and keep their state values constant, while the remaining
agents are benign. By invoking Conditions (1) and (2) in (11), we know
that the number of nodes in S; /S, with at least f+1 in-neighbors is less
than the number of nodes in S, /S,. Since we have made assumptions
that all malicious agents are in y;"]“ and yg“ according to Condition
(3), there exists at least one benign agent in S; who has at most f
in-neighbors outside S,. Similarly, we obtain that there exists at least
one benign agent in S, who has at most f in-neighbors outside S,.
Therefore, both S| and S, possess at least one benign agent who has at
most f in-neighbors outside of their respective sets. Through the RDO-
E algorithm, these benign agents will remove f or less state values of
these in-neighbors. Thus, for benign agents in S;, we deduce that

X +y Y 0,k (%00 - x,(0) =x,
JERT (k)

and d;(k)=0, Vie S;nB, Vk>0. (12)

Similarly, for benign agents in S,, we have

X +r Y 0,00 (%00 = x;06) = x,
leij(k)

and d;(k)=0, VjeS,nB, Vk20. 13)

1 The generality here refers to the flexibility of x;,x, € R, i.e., we can also
let x; > x,. The idea of proof is to consider a counterexample which satisfies
all the prerequisites. Subsequently, we will obtain the contradiction, thereby
deducing the necessary condition.
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Synthesizing (12) with (13) yields that the state values of these benign
agents will remain unchanged at x; or x,, i.e.,

x,(k)=x,, Vi€ S, nB, ¥k >0
x;(k) = x,, Vj € S,n B, Yk >0,

14

which indicates that no agreement will be reached among benign
agents.

(Sufficiency) For the sufficiency, we need to prove the convergence
and derive the prescribed condition of ¢,. Let

M(k) = max {x; ()}, mk) = xgg {x;(k)}. (15)

Furthermore, we define L(k) = M(k) — m(k). If L(k) asymptotically
converges to the error range ¢, we say that the system reaches an
approximate agreement.

In addition, we define o;(k) = %;(k) — x;(k). From (8), we further
obtain

o =14" 70 >0 a6
%;(k = 1) = x;(k), otherwise.

Notice that

|oj00)| < 70, Wk 2 0. a7

Thus, the update rule for agent i € B is given by

x;(k + 1) = 6 (k)x;(k) + 7 Z 0, (k) (x; (k) + 0;(k)) = alk)d;(k),  (18)
JERT (k)

where 0,;(k)=1-y Zjeng,(k) 6,;(k) and D is a positive scalar which
satisfies |d;(k)] < D. In view of the maximum state values defined in
(15), the update rule (18) is upper bounded by

xi(k+1) <0, 0ME) +y Y, 0,,(k) (M(K)+0,(k)) + Da(k)
JERF (k)

=MK) +y Y. 6,0,k + Da(k)
JERT (k) (19)

< M(k)+ r max )Uj(k)‘ + Da(k)

< M(k) + yr(k) + Da(k).
Similarly, one obtains
x;(k + 1) > m(k) — yz(k) — Da(k). (20
Construct two sequences as
M(k+1) = M(k) +yr(k) + Da(k), m(k+1) = m(k) — yr(k) — Da(k), (21)
where
M(k) = M(k) — j, m(k)=mk)+f, j=pLk). (22)

Another sequence is constructed as

M+ 1) = Edk) — (1 - &), 23)
where
k) = AL(k), &=7yp. @4
Select the parameters A and y such that

-1 &
ﬁ+/4—2, 0<ﬂ<1_§nﬂ. (25)

For any A(k) € R and k' > k, let
Mk K Ak =iV x,(k")> Mk) - Atk) \,
k. { @)>Hi) - )} 6
MK ARk = {i €V 1 x,(k)) <mk)+ A(k)} .
To capture the robust property of the network, it is expected to prove
that M(k, k', A(k)) and M(k, k', A(k)) are nonempty and disjoint.
For the nonempty property, it follows from (22) that M (k) > M (k)—
A(k). Similar analysis can be conducted on m(k) to obtain m(k) <
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m(k) + A(k), which yields the nonempty property of these two sets.
Furthermore, according to (15), both of these two sets contain at least
one benign agent at time step k. .

For the disjoint property, we need to prove M (k)—A(k) > m(k)+ A(k).
By invoking (22), we have
M (k) = Ak) = (mi(k) + A(k))

= (M (k) — m(k)) — 2(A(k) + f)

= L(k) = 2(A+ p)L(k)

=0,

27)

where the last equation holds due to 4+ u = 1/2. Therefore, we obtain
that M(k, k', A(k)) and M(k, k', A(k)) are disjoint.

According to the aforementioned analysis, it has been proved that
the sets M(k, k', A(k)) and M(k, k', A(k)) are nonempty and disjoint, with
at least one benign agent in their respective sets. Since the underlying
network is (f + 1, f + 1)-robust, at least one of the following condition
holds:

f+1| _ [+ _ f+1 f+1
Wit =1sil. @i =15l @&+ 1
It is noteworthy that no matter which condition holds, either
Mk, k', A(k)) or M(k, k', A(k)) contains at least one benign agent who
possesses at least f+1 in-neighbors outside of its respective set. Assume

that the benign agent belongs to M(k, k', A(k)), i.e., i € M(k, k', }(k))nB.
We shall now revisit (18) and rewrite it as

k+D=[1-y Y o,00|x®+r Y 6,;00xk)
JERF (k) JERF ()M
tr Y 0x 0 +y Y, 0,000k — a(kd k),
JERT (\M JER] (k)

(28)

where M(k, K, A(k)) is abbreviated as M for the convenience of expres-
sion. By invoking (15) and (22), the upper bound of (28) is given by

yk+n[1-y Y om0|MB+y Y, 6,00MK)
JERF (k) JERF (NM
+r Y, 0,00(M(K) - Ak))
JERT (\M
7D, 0500k — alk)d;(k)
JER] (k)
29)
=[t-r Y o,0|M®
JERFN\M
+ro ), Oy(0(M (k) — Ak)
JERFI\M
+r Y 0,(k0;(k) — atkd, (k).
JERT (k)

Replacing M (k) with M(k)+ i and utilizing the limit of o;(k) and d,(k),
(29) is further upper bounded by
xk+1)<|1-7 Z 0,;(k) | (M (k) + )
JERT(I\M
+r Y 0,0 (MK) - AGk)
JERF(\M (30)

+ y max )oj(k)‘ + Da(k)
JERF (b

SMUE) + (1= yP) fi — yBAGK) + yr(k) + Da(k)
=Mk+1) = Ak + 1),
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which indicates that if a benign agent belongs to M(k, k, A(k)) at time
step k, it will belong to V\ﬂ(k,k + 1,A(k + 1)) at time step k + 1.
Notice that inequality (30) also holds for benign agents that are in
VA\M(k, k, A(k)) at time step k. This fact implies that regardless of the
state value for agent i, it will belong to V\ﬂ(k, k+1, A(k+1)) at the next
time step. Similar conclusion can be conducted on M(k, k+1, Ak +1)).
By recursion, we know that all benign agents will move out from
Mk, k + n, Ak + n)) or M(k,k + n, Ak + n)) after n time steps, which
means that either M(k, k + n, Atk + n)) 0 B ot M(k, k +n, A(k +n)) N B is
empty at time step k + n. Assume that Mk, k+n, A(k+n)n B is empty.
Then, we have

x;(k+n) < M(k+n)— Ak +n), Vieh, (3D
which yields that
Mk +n) < M(k + n) — A(k + n). (32)

We next show that m(k +n) > m(k +n)— ji. For time step k +n, it follows

from (20) that

mk+n)>mk+n—-1)—yr(k+n—-1)— Da(k+n—-1)
>mk+n—1)—yrtk+n—1)—Datk+n—1)—fj (33)
=m(k +n) — ji.

To proceed with the convergence analysis, we need to derive recursive

results at time step k + n for sequences (21) and (23).
Let us first focus on M (k + n). It follows from (21) that

n—1
M(k+n) = M(k) + Z (yr(k + 1)+ Da(k +1)). (34)
1=0

Similarly, we have

n—1
m(k + n) = m(k) — Z (yr(k+1)+ Da(k +1)). (35)
1=0

Now, let us turn our attention to A(k + n). It follows from (23) that
Ak +n) = &"20k) = ("' + -+ &+ DA -4
=&"AL(k) — (1 = &"puL(k) (36)
=("A— (=& LK.
Combining the results of (32), (33), (34), (35), and (36) gives that:
L(k +n) = M(k+n)—m(k +n)
< Mk +n) = Ak +n) = m(k +n) +

n—1 n—1
=M(k)—m(k)+2zyr(k+l)+22Da(k+1)
1=0 1=0

= (€"A=-A =& LK) + i
—on

= (M) = 0 = () + ) + 2pegn + 27e) LS e

I
n—1
+2D Y atk+1) - "4 — (1 - &) L) + @7)
1=0

1—e"n 4
= L(k) + 2ycon + 2yc, l—e*b" — uL(k)
e

8
n—1

+2D Z alk +1) = (&"A = (1 = &"u) L(k)
1=0
1 —eon

—ok

==&+ w)Lk) +2ycon +2yc; e

1—e$
n—1
+2D ) ak+1).
=0
Since a(k) is nonincreasing and A + p = 1/2, we further derive

n _ a—bn
Lk+n) <(1- %)L(k) +2ycon +2y¢ 11 c > e %% + 2Dna(k). (38)

—e~
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Thus, for any ¢ € N, we have

n e-1 n
Lik+em < (1= ) L0k + da- %)H*l
1=0 (39

—on
X <2ycon +2y¢; 11 © 5 e &+ 4 2 Dna(k + In)) .

As ¢ goes to infinity, e **+™ — 0 and a(k + In) — 0. By invoking
Lemma 1, we obtain

—1
E 5)5_1_1 _ 4cgyn _ 4cyn

lim Lk + en) < 2ycon %(1 -3 o = iy S (40)
Since the aforementioned result holds for any k > 0, we know

4 n—1pgn
lim L(k) = ot <c=>cn < s c. 41)
k—o0 y”_lﬁ" 4n

This completes the proof of convergence and the prescribed condi-
tion (10). W

3.3. Convergence analysis for the f-local malicious model

In this part, we will study the convergence property of the CPS
involving the f-local attack scenario, which represents a scalable num-
ber of malicious agents. The necessary and sufficient conditions are
respectively presented for the CPS to reach an agreement within the
error range ¢ under the f-local malicious model.

Theorem 2. Consider a CPS modeled by G = (V, £). Let Assumptions 1-3
hold. Assume that each agent adopts the RDO-E algorithm for state update.
Under the attack of f-local model,

(1) a necessary condition for reaching agreement within the error range
¢ among benign agents is that the network is (f + 1)-robust;

(2) if the network is (2f + 1)-robust, then agreement within the error
range c¢ will be reached among benign agents. Furthermore, the error
range c is achieved if ¢, satisfies

n—1 pgn
‘< - 4nﬂ

c. (42)

Proof (Necessity). We also consider the special case without the event-
triggering mechanism (i.e., ¢y = ¢; = 0) and prove the necessity of
the network condition by contradiction. Assume that the network is
not (f + 1)-robust. According to Definition 3, we can construct two
nonempty and disjoint subsets S, S, C V, both of which are not (f+1)-
reachable. This fact implies that each agent in S, and S, possesses at
most f in-neighbors outside of their respective sets.

Let minimum solutions of the local cost functions for agents in S;
and S, respectively be

argmin f;(x) = M’, Vi€ S|,
X

argmin f;(x) =m', Vj €S,
X

with gradient being zero, where
M = i(k
max {x;(k)} , )
! = 1 .
m = 1121{71 {x,(k)} .
Moreover, suppose that the state values of agents in S; and S, at time
step k satisfy

x,(k)=M' Vies,
xj(k) =m, Vj€E€S,,
i.e., allocate the maximum and minimum state values to agents in
S, and S,, respectively. Through the RDO-E algorithm, however, the

agents in S; and S, will never utilize any values outside their respective
sets for update. Consequently, the state values of agents in S| and S,
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will remain unchanged at M’ and m’, respectively, and no agreement
will be reached among benign agents.

(Sufficiency) For the sufficiency, we also consider the nonempty
and disjoint subsets M(k, k+n, A(k +m)) " B and Mk, k+n, Ak +n)) N B.
Since the underlying network is (2f + 1)-robust, we can assume that
Mk, k + n, ik + n)) N B is (2f + 1)-reachable. Through the RDO-E
algorithm, at least one benign agent in Mk, k + n, ik + n)) n B will
utilize at least one of its benign in-neighbors’ state values from outside
for update. Therefore, (18) is written as

xi(e+1) < (1= y)IM(K) +yp(M (k) = Ak) +7 max |o;(k)| + Da(l)
JERT (W)

<L —yAHMK) + ) + y M (k) — A(K) + yz(k) + Da(k)
= M (k) + yz(k) + Da(k) — (yBA(k) — (1 = yp)i1)
=Mk+1) = Ak + 1),
(44

which is consistent with (30). The subsequent deduction process is the
same as that of Theorem 1 and thus omitted. W

Remark 5. Note that the CPS reaches an agreement at the same
error level under the conditions of Theorems 1 and 2. This is because
the most significant difference between two theorems lies in diverse
robustness requirements. These graph conditions have no influence on
convergence accuracy. Furthermore, it is achievable to improve conver-
gence accuracy by simply setting ¢, = 0. However, this operation may
simultaneously reduce the convergence rate and increase the number
of triggered events. This contradiction indicates a trade-off between
reaching an agreement at a lower error level and consuming more
communication overheads.

3.4. Optimality analysis

The aforementioned theorems merely guarantee that the final state
value converges within the error range ¢ under different attack models.
In this part, we will further analyze the optimality of the CPS.

Suppose that each local cost function f;(x), Vi € B possesses a
nonempty compact set of minimizers X;. Furthermore, define m* =
min;cz min{x|x € X} and M* = max;cz max{x|x € X}'}. The following
theorem reveals that despite malicious attacks, the state values for
benign agents will converge to the safety interval ¥ = [m*, M*], which
refers to the convex hull of local minimizers for all benign agents.
Resilient distributed optimization is thereby guaranteed.

Theorem 3. Consider a CPS modeled by G = (V, £). Let Assumptions 1-3
hold. Assume that each agent adopts the RDO-E algorithm for state update.
Under the attack of f-total model, the state values of all benign agents will
converge to the safety interval ¥ = [m*, M*] if the underlying network is
(f + 1, f + 1)-robust.

Proof. Suppose that limsup,_  M(k) = M* + ¢ for the sake of a
contradiction argument, where ¢ > 0. Since lim;_, (M (k) — m(k)) =
degn/y"~1p" according to Theorem 1 and lim,_, ., a(k) = 0, there exists
ky such that

M*+§5M(k0)sM*+3§, (45)
M (k) = m(k) < %, Yk > ko, (46)
and

Da(k) < 2, Vk > kg (47)

hold. By invoking (45) and (46), we further obtain

m(k) > M(k) — f-‘ > M+ %. (48)
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Since f;(x) is convex and the local optimal value x; for cost function
fi(x), i € B satisfies x; € [m*, M*], we know that d,(x) is dimin-
ishing and d,(k) > 0, Vx > M?*. Define h = d,(M* + g) > 0.
Then, we have d;(k) > h > 0, Vi € V, Vk > ky. Denote k; =
inf {k > ko | M(k) < M* + %} as the first time step when M (k) < M* +
g, Vk > k. We shall prove that such k; exists by contradiction. For any
k > ky, it follows from (18) that

x;(k +1) < M(k) — ha(k), Vi € B, (49)

which indicates that M(k + 1) < M(k) — ha(k). For any k' € N¥, it is
further derived

ko+k' -1
Mg+ k)< Hk)=h Y, al)
I=kg
3 ko+k'-1 G
" €
SM 4+ —h I_zk: a(l).
=Ko

Due to Y7 | a(k) = co, there exists some Ak’ such that ng;ﬁkq a(l) >

%, which indicates M (ky+Ak") < M* + g This leads to a contradiction,
i.e., there exists k; = ky + Ak’ such that M(k;) < M* + g Denote

ky = inf{k>ky| M(k) < M* +§ . Then, we focus on M (k) for all
k € [ky, ky]. If follows from (47) that

x(ky + 1) = 0,00x,(k)+y Y, 0,00 (x;00) +0,(k) — a(k)d, (k)

JERF (k)
< M(k)) + Da(k,) (G20
3e
<M* 4+ —,
= 4

which yields M(k;, + 1) < M* + 376. Now, we discuss two cases
distinguished by the magnitude relation between M (k;+1) and M*+ %
If M(k\+1) > M*+ %, we can repeat the aforementioned analysis (49)—
(51) and find that M (k) is decreasing. Furthermore, there exists k, > k;
such that M(k,) < M*+ g It follows that M (k) < M* + 376, Vk € [k, k,]
always holds. If M(k; +1) < M* + %, it is evident that k, = k; + 1. In
this situation, one also obtains M (k) < M* + %, Vk € [ky, k).

By recursion, we define k; = inf {k >k | M(k) < M* + %}1 =

3,4,.... Then, it is derived that M(k) < M* + 37 Vk € [k_ k1, 1 =
3,4, ... always holds. Consequently, we obtain limsup,_, x;(k) < M* +
%, which leads to a contradiction since we have assumed that
limsup,_,, M(k) = M* + e. This fact indicates limsup,_ ., x;(k) <
M*. Similarly, we derive liminf,_x; > m*. Thus, the proof is
complete. W

Theorem 4. Consider a CPS modeled by G = (V, £). Let Assumptions 1-3
hold. Assume that each agent adopts the RDO-E algorithm for state update.
Under the attack of f-local model, the state values of all benign agents will
converge to the safety interval ¥ = [m*, M*] if the underlying network is
(2f + 1)-robust.

Proof. The proof is similar to that of Theorem 3 and omitted here. W

Remark 6. Although Theorems 3 and 4 ensure that the convergence
value remains in the safety interval constructed by local optimal val-
ues, they do not guarantee accurate optimization under two attack
scenarios. Rather than seeking for convergence to a safety interval, one
may ask whether it is achievable that the CPS exactly converges to
the global optimizer under adversarial environments. The paper [18]
claimed that this goal is unattainable unless extra assumptions are
made on agents’ objective functions. Based on this fundamental result,
the paper [32] showed that accurate optimization is achieved under
adversarial environments if the 2 f-redundancy assumption is posed on
the agents’ objective functions. Nevertheless, the work [32] executed
the analysis in a peer-to-peer network, while the attack scenario was
limited to the f-total model. It was further revealed in [33] that the
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Fig. 5. A (2,2)-robust digraph with eight nodes.

assumption is a necessary condition for ensuring accurate optimization.
Extending the results [32,33] to general networks and providing more
complete optimality conditions remain open directions of research.

4. Case study

This part presents four numerical cases to validate the theoretical
results and show the effectiveness, superiority, and practical viability
of the RDO-E algorithm. Specifically, we first consider a CPS consisting
of 8 agents and each agent i € V possesses a local and confidential
function f;(x) = p; |x — ¢;|. It is evident that each f;(x) satisfies Assump-
tion 1 and has a unique local optimal value x; = g;. Moreover, assume
that all agents endeavor to tackle the following distributed optimization
problem:

8 8
. 1 1
arg:nm F(x) = 3 ; fi(x) = 3 ;Pi [xi —q] - (52)
The parameters for f;(x;) are set as [pl,---,Ps]T = [0.1,0.2,0.3,0.4,

0.4,0.3,0.2,0.11T and [g;,...,q5]"T = [-0.8,-0.6,-0.4,-0.2,0.2,0.4,0.6,
0.8]T, respectively. The initial state values for the CPS are denoted
as [x,(0),...,xg(®]T = [0,2,1,0.5,3,-0.5,—1,-2]T. The safety interval
is calculated as ¥ = [-0.8,0.8]. Furthermore, we set the parameters
concerning trigger function (7) as ¢y, = 5% 1073, ¢, = 0.05, § = 0.03.

4.1. The f-total attack scenario

We firstly consider the f-total attack scenario. The network of the
CPS is presented in Fig. 5, which is verified to be a (2, 2)-robust graph.
By invoking Theorem 1, the network is capable of tolerating at most 1
malicious agent in the whole network.

Thus, we postulate that the network is under the attack of 1-
total attack model and let Agent 1 be malicious. It means that the
attacker has manipulated Agent 1 and may change its state value
arbitrarily. Furthermore, the malicious value will be transmitted over
the underlying network to all out-neighbors of Agent 1. In this situation,
it is impractical to solve (52) due to the persistent loss of information
concerning f;(x) throughout the entire iteration process. Consequently,
the remaining benign agents will collaboratively endeavor to tackle

8 8
. 1 1
argmin £y (x) = 5 Z fix) = 3 Zpi |xi —a] - (53)
x =2 i=2

If the influence of Agent 1 is neglected, we will obtain the optimal
solution x; = 0.2, Vi € B for problem (53) using the optimization

10
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algorithm in [10]. The result is illustrated in Fig. 6(a). Next, we involve
Agent 1 into the network and set its state value as x;(k) = 1.5 x
sin(0.02zk). It will try to prevent benign agents from converging to the
optimal value. Fig. 6(b) displays the state values for the eight agents
using the algorithm proposed in [10], which is not equipped with any
defensive measures against malicious attacks. It can be seen that benign
agents are incapable of achieving resilient distributed optimization.
Instead, they follow the malicious agent in a sinusoidal motion, and
the trajectories exceed the safety interval ¥. The result implies that the
malicious agent not only poses risks to the individual nodes, but also
jeopardizes the safety and integrity of the whole system.

Subsequently, we apply the proposed RDO-E algorithm to the CPS
and obtain the convergence result, as shown in Fig. 7(a). It is observed
that despite the influence of Agent 1, the benign agents achieve resilient
distributed optimization inside ¥, which validates Theorems 1 and 3.
Moreover, the event-triggering time in Fig. 7(b) indicates that the fre-
quent information interaction between agents is significantly mitigated,
thus the communication burden of the system is lightened.

4.2. The f-local attack scenario

In this part, we further consider the f-local attack scenario, which
is a more common situation in practice (e.g., large-scale distributed
networks). The network of the CPS is depicted in Fig. 8, which is
verified to be a 3-robust graph. By invoking Theorem 2, the network
is capable of tolerating at most 1 malicious agent in the in-neighbor
set for each agent. Suppose that Agents 1 and 2 are malicious agents. It
can be verified that the cyber—physical network satisfies the condition
of 1-local attack model. The problem (52) remains unsolvable due to
the information missing of Agents 1 and 2 during the iteration process.
Thus, the remaining benign agents will collaboratively endeavor to
tackle

1 i 1 :
arg;nin Fy(x) = 3 ,Z; filx) = 3 [Z;pi |xi —q;] - 54

If we ignore the influence of Agents 1 and 2, we will obtain that
the optimal solution for problem (54) is still x¥ =0.2, Vi € B using the
optimization algorithm in [10], as shown in Fig. 9(a). Subsequently,
we involve Agents 1 and 2 into the network and set their state values
as x; (k) = 1.5 x sin(0.05zk) and x,(k) = rand(—1, 1), respectively, where
rand(—1, 1) refers to a random number belonging to (-1, 1). Fig. 9(b) dis-
plays the convergence result adopting the algorithm proposed in [10]
under the f-local attack model. Notice that the trajectories of the be-
nign agents exhibit irregular movements and exceed the safety interval
¥, which implies that the benign agents would be seriously affected
by Agents 1 and 2. The result also indicates the necessity of resilient
algorithms.

Now we apply the proposed RDO-E algorithm to the CPS and obtain
the convergence result, as shown in Fig. 10(a). It can be observed
that regardless of the misbehavior of two malicious agents, the be-
nign agents achieve resilient distributed optimization inside ¥, which
validates Theorems 2 and 4. Furthermore, the result of event time
instants is shown in Fig. 10(b), which indicates that the frequent in-
formation interaction between agents is mitigated, thus the substantial
communication burden is lightened.

4.3. Comparison among different resilient algorithms based on the event-
triggering mechanism

In order to show the superiority of the proposed RDO-E algorithm,
a comparative analysis is conducted between the RDO-E algorithm and
other established event-based resilient algorithms. Specifically, to equip
the algorithms with the ability to achieve resilient distributed opti-
mization, we modify the control protocol of the event-based resilient
algorithm proposed in [23] as

wky=y D 0,0 (%, — %K) — atk)d k).

JERF (k)

(55)
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Fig. 6. Convergence results using the algorithm proposed in [10]: (a) without the malicious attack; (b) with the malicious attack.
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Fig. 7. Convergence result and triggering behavior using the proposed RDO-E algorithm: (a) trajectories of agents; (b) event instants with the event function (7).

For event-based resilient algorithm [27], we let its control protocol the
same as (55) and modify the update rule as

x;(k + 1) = £,(k) + ; (k). (56)

Other parameter settings and the event function are the same as the
proposed RDO-E algorithm.

The simulation results using the event-based algorithm proposed
in [23] are illustrated in Figs. 11(a) and 11(b). Although the six benign
agents converge to the optimal value and achieve resilient distributed
optimization inside the safety interval, As shown in Fig. 11(b), numer-
ous event instants occur in the time interval (0, 80) for agents 3, 4, 6, 7,
and 8. It means that the CPS still needs to achieve resilient distributed
optimization through frequent communication between agents.

Figs. 11(c) and 11(d) display the simulation results using the event-
based algorithm proposed in [27]. Fig. 11(d) indicates that the event
function (7) triggers occasionally, but Fig. 11(c) shows that the conver-
gence value deviates from the optimal value xi =02, Vi€ B, which is
unacceptable.

In order to facilitate a more intuitive comparison of method per-
formance, we further calculate the number of triggered events for all
benign agents in the simulation time steps and the relative errors of
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Table 2
Comparison among different algorithms under the f-local attack model.
Algorithm  RDO  Event counts Relative error
ag.3 ag4 ag5 agb6 ag7 ag8
[10] X \ \ \ \ \ \ \
[19] VA \ \ \ \ \ o 02%
[23] 4 55 63 21 37 54 51 3.44%
[27] v 11 8 25 8 16 8 38.21%
RDO-E v 19 22 17 16 33 26 1.16%

different algorithms, which are shown in Table 2. Note that three indi-
cators are selected to evaluate the performance of various methods. The
indicator “RDO” will be marked with vif a method achieves resilient
distributed optimization, otherwise, it is marked withX. The indicator
“Event counts” is suitable for event-based algorithms to record the trig-
gered events during the iteration process. Fewer event counts mean a
lighter communication burden. The indicator “Relative error” describes
the relative error between the convergence value for the CPS and the
real optimal value. In addition, the algorithm [19] is selected as a
benchmark algorithm, whose relative error is calculated as a reference.
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Fig. 8. A 3-robust digraph with eight nodes.

From Table 2, it is shown that the proposed RDO-E algorithm
reaches the closest relative error to the algorithm [19] and triggers
with fewer events. It means that the RDO-E algorithm balances algo-
rithmic performance and event-triggering performance. Consequently,
the proposed RDO-E algorithm is superior in achieving resilient dis-
tributed optimization with higher accuracy and lower communication
overheads.

4.4. Application of the proposed algorithm to microgrids

In this subsection, we apply the proposed RDO-E algorithm to a
multi-microgrid system and endeavor to tackle a resilient economic
dispatch problem (REDP). A microgrid, consisting of intelligent devices,
surpasses conventional power grids in terms of communication and
processing capabilities [34]. It is a typical CPS and is widely recognized
as the future infrastructure for power systems. Microgrids benefit from
the use of distributed algorithms to determine the optimal solution for
REDP, as opposed to centralized techniques. The goal of REDP is to
optimize the power output of each distributed energy resource (DER)
in order to minimize the overall generation cost, while fulfilling the
output constraints of individual DERs and defending against malicious
attacks.

Consider a multi-microgrid system described by Fig. 12(a), where
multiple microgrids interconnect with each other through the network
and can retrieve the voltages of DER from neighboring microgrids [35].
The network topology of the multi-microgrid system is depicted in
Fig. 12(b), which is verified to be a 5-robust graph. By invoking
Theorem 2, the network is capable of tolerating at most two malicious
microgrids in the in-neighbor set of each microgrid.

Suppose that Grids 1 and 2 are malicious. It can be verified that the
multi-microgrid network satisfies the 2-local attack model. The benign
grids will try to solve the following REDP:

8

Z (pix} +aqix; +17)

8
. 1 1
argmin F3(x) = 3 Z filx;) = 3
x i=3 i=3

subject to_ lim |x;(k) —x,(k)| <. Vi.je B 7
—00

lim x,(k) € ¥ = [m", M*], Vi€ B,
—00

where x; is the output generation of Grid i, and f;(x;) = p;x> +g;x+r; is
a specific local cost function corresponding to Grid i. The parameters
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for f,(x;) are set as [p;,...,pg]T = [0.6,0.3,0.5,0.8,0.2,0.5,0.7,0.4]T,
[41s -, q5]" = [-10,—13,-6,—10,-5,—4,-7,—8]T, and [r},...,rg]T =
[20,30,35, 10, 15,25, 10, 15]T. The initial output generations for grids are
given by [x(0), ..., xg(0]T = [0,5,10,0,12,4,0,8]T. The safety interval
is calculated as ¥ = [4,12.5]. Furthermore, we set the parameters
concerning trigger function (7) as ¢y = ¢; = 0.05, 6 = 0.03.

Subsequently, we apply the proposed RDO-E algorithm into the
multi-microgrid system and obtain the convergence result, as shown
in Fig. 13(a). It is observed that despite the influence of Grids 1 and
2, the output generations of benign grids eventually converge within ¥
and approach the optimal value x} = 6.45, Vi € B of the problem (57).
This result means that the resilient economic dispatch problem has been
successfully solved. Moreover, the triggering behavior in Fig. 13(b)
indicates that the frequent information interaction between microgrids
is significantly mitigated, thus the communication burden of the system
is lightened.

5. Conclusion and future work

This study focuses on examining the resilient distributed optimiza-
tion problem in CPSs when subject to f-total and f-local attack sce-
narios. To defend against malicious attacks, reduce communication
overheads, and achieve resilient distributed optimization, an event-
based RDO-E algorithm is developed. The convergence and optimality
analyses for two attack models are conducted, respectively. The sim-
ulation results validate the theoretical analysis. For the f-total attack
scenario, the proposed RDO-E algorithm ensures that the state values
of benign agents converge to a safety interval determined by local
optimal values if the cyber—physical network is (f + 1, f + 1)-robust.
For the f-local attack scenario, despite two malicious agents exist in the
network, the proposed RDO-E algorithm still guarantees that the state
values of benign agents converge to the safety interval if the cyber—
physical network is (2f + 1)-robust. From the comparison results, it
is shown that the proposed RDO-E algorithm effectively reduces the
communication overheads and has a lower relative error than other
event-based algorithms. In addition, the proposed method is applicable
to multi-microgrid systems and has successfully tackled a resilient
economic dispatch problem.

Future work will include the consideration of other malicious at-
tacks and external disturbances, e.g., protocol attacks, communication
delay, and noise. Extending the obtained results to higher-dimensional
space would also be of significant theoretical and practical interest.

CRediT authorship contribution statement

Zirui Liao: Writing — original draft, Writing — review & editing,
Formal analysis, Investigation, Methodology. Shaoping Wang: Project
administration, Supervision, Validation, Funding acquisition. Jian Shi:
Supervision, Project administration. Ming Li: Investigation, Method-
ology, Writing — original draft. Yuwei Zhang: Validation, Investiga-
tion, Writing — original draft. Zhiyong Sun: Supervision, Methodology,
Project administration, Writing — original draft, Writing — review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (Grants No. U2233212 and 62303030), the Beijing Municipal
Natural Science Foundation (Grant No. 1.221008), the China Scholar-
ship Council (Grant No. 202206020114), and the Outstanding Research
Project of Shen Yuan Honors College (Grant No. 230122204).



Z. Liao et al. ISA Transactions 149
3 T T T T T T T T T 3 T T T T T T T T T
X X1 Xs
25 06 °l 25F i
0.4 — Xg X2 Xe
2F 0, —— X5 - 2
— xg
15 0 1 15 |
[
-0.2
»
8 17 40 5 10 15 — % 1 g 1 A
© / .......... ¥ =
> 0.5 E > 0.5
n 0 E &0
0.5} R -0.5 |
ERS E 4t
A5} R 1.5
2 . . . . . . . . . 2 . . . L . . . . .
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 20 100
Time steps Time steps
(a) Benign agents achieve RDO. (b) Benign agents fail to achieve RDO.
Fig. 9. Convergence results using the algorithm proposed in [10]: (a) without the malicious attack; (b) with the malicious attack.
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Fig. 11. Convergence results and triggering behaviors: (a) trajectories of agents using the algorithm proposed in [23]; (b) event instants using the algorithm proposed in [23]; (c)
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trajectories of agents using the algorithm proposed in [27]; (d) event instants using the algorithm proposed in [27].
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Fig. 12. An illustration of the multi-microgrid system and its corresponding network topology.
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Fig. 13. Convergence result and triggering behavior of the multi-microgrid system using the proposed RDO-E algorithm: (a) Output generations of microgrids; (b) event instants
with the event function (7).
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